
JON TUTCHER, BBC DATALAB, PYDATA LONDON

14 JULY 2019

DATA SCIENCE
FRAMEWORKS AND
MANAGED SERVICES:
WHEN TO AVOID THE
SHINY NEW TOYS

 2

Our Team

The Product

Technology

Mistakes

Lessons Learnt

Why?

Predicting Bad Behaviour

The Next Thing

 3

THE FREE & OPEN SOFTWARE RADIO ECOSYSTEM

 4

 5

Content

Audience Data

Content Metadata

TITLE OF PAGE

SECTION HEADING

 6

 7

"We'll have other customers - we need to build a
platform"

"We're a new, independent team - the bosses want us
to try some new technology"

"We don't really know what the requirements are yet,
so let's build something really flexible"

GETTING STARTED

BBC+

 8

OUR RESPONSE

BBC+

DroneCI

 9

OUR TECHNOLOGY
CHOICES

 10

 11

Click to add text

You can add your text here and it will flow into two
columns.

TITLE OF PAGE (2 COLUMNS)

SECTION HEADING

 12

 13

GRPC

TECHNOLOGY CHOICES

HTTP (JSON) gRPC (protobuf)

Every developer knows
how to use (ish)

Developers need training

Tooling is everywhere Tooling is difficult

Loads of python libraries! gRPC library (un-googleable)

Slow? Fast Slow (in python)*

API changes are tricky API changes backward-compatible

*https://performance-dot-grpc-testing.appspot.com/

https://performance-dot-grpc-testing.appspot.com/

 14

BBC "TRADITIONAL" SOFTWARE DEPLOYMENT

TECHNOLOGY CHOICES

 15

GOOGLE CLOUD PLATFORM

TECHNOLOGY

 16

DOCKER & KUBERNETES

TECHNOLOGY CHOICES

Server 1 Server 2 Server 3

 17

SPINNAKER

TECHNOLOGY CHOICES

 18

container build pipeline

staging deployment pipeline

production deployment pipeline

Cloud Build

Container Registry

connected-data-
catopsis@v0.23

connected-data-
staging/somebranch

@ infrastructure.yml:25 @ spec:
 - name: catopsis-stage
 ##
 # Update the tag on the next line to set version
 image: "gcr.io/bbc-connected-data/catopsis:v0.22"
 image: "gcr.io/bbc-connected-data/catopsis:v0.23"
 ##

v0.23

docker push gcr.io/bbc-connected-data/catopsis:v0.23

connected-data-
production/master

Cloud Build
kubectl apply -f infrastructure.yml

git commit

1 2

3

connected-data-
staging/master

Cloud Build
kubectl apply -f infrastructure.yml

git commit

git rebase master && git push

catopsis:v0.23

Kubernetes Engine

catopsis-
production@v0.22

catopsis-
stage@v0.23

Kubernetes Engine

catopsis-
production@v0.23

catopsis-
stage@v0.22

Kubernetes Engine

catopsis-
production@v0.23

catopsis-
stage@v0.23

4 & 5

6 7

8

v0.22
v0.23

 19

• Pace dropped

• Low confidence in our code

• Data science dev slowed

• Bugs compounded

• Team morale dropped (until we started fixing!)

OVERALL TEAM EFFECTS

 20

ingest package

ingest retrieve transform persist elasticSNS

S3 orchestrate

 21

 22

• Elasticsearch

• Managed Logging (mostly)

• Managed Training (Google ML Engine) (mostly)

• Committing to Tensorflow (for now)

OTHER GOOD IDEAS

TECHNOLOGY CHOICES

 23

• Decision making in new teams

• Over-engineering is easier than doing research

• Selection bias in press / meetups

• Python = no hassle

• Kubernetes = a keeper (for larger projects)

LESSONS LEARNT

TECHNOLOGY CHOICES

 24

https://commons.wikimedia.org/wiki/File:Dunning-kruger.png

https://commons.wikimedia.org/wiki/File:Dunning-kruger.png

 25

"The grim paradox of this law of software is that you
should probably be using the tool that you hate the
most. You hate it because you know the most about
it."

"USE BORING TECHNOLOGY"

- Dan McKinley, http://boringtechnology.club/

http://boringtechnology.club/

 26

Code Feature

Run dev env Change gRPC

Debug

Write K8S Manifests

Setup in Spinnaker

Debug in Stage

need help from Theo need help from Beth need help from Jens

no help needed no help needed need help from Beth

Deploy to Prod

need help from Tati

ANATOMY OF TASK BLOCKING

 27

Code Feature

Run sandbox Write HTTP API

Debug

Push to git

Deploy to Stage

Debug in Stage

learn cosmos no help needed

no help needed no help needed

Deploy to Prod

learn cosmos learn cosmos

no help neededno help needed

ANATOMY OF TASK BLOCKING

*cosmos = BBC's cloud deployment platform

https://www.youtube.com/watch?v=Wk-tOPicq78

 28

class Technology:
 def __init__(self, name, maturity, familiarity, support, maintenance_cost, benefit):
 self.name = name
 self.maturity = maturity
 self.support = support
 self.familiarity = familiarity
 self.maintenance_cost = maintenance_cost
 self.benefit = benefit

 @property
 def pace_cost(self):
 risk = (1 - self.maturity) + (1 - self.support)
 return risk * (1 - self.familiarity)

 @property
 def total_cost(self):
 benefits = self.benefit
 risks = self.pace_cost + self.maintenance_cost
 return max(risks - benefits, 0)

technologies = [
 Technology("Spinnaker", maturity=0.1, familiarity=0.2, support=0.4, maintenance_cost=0.7, benefit=0.5),
 Technology("Postgres", maturity=1.0, familiarity=0.8, support=1.0, maintenance_cost=0.5, benefit=0.7),
 Technology("Hosted SQL", maturity=0.7, familiarity=0.5, support=0.7, maintenance_cost=0.2, benefit=0.7),
 Technology("Airflow", maturity=0.2, familiarity=0.5, support=0.4, maintenance_cost=0.4, benefit=0.6)
]

Model cost of adoption
for tech in technologies:
 print(f"{tech.name}: pace cost: {tech.pace_cost:.2f}, total cost: {tech.total_cost:.2f}")

Spinnaker: pace cost: 1.20, total cost: 1.40
Postgres: pace cost: 0.00, total cost: 0.00
Hosted SQL: pace cost: 0.30, total cost: 0.00
Airflow: pace cost: 0.70, total cost: 0.50

 29

"How can we make model exploration and creation as
automated as possible, whilst tracking provenance of
data and code"?

THE NEXT CHALLENGE

BBC+

 30

THE KNEEJERK REACTION

WHAT NEXT?

 31

WHAT'S NEXT?

ML WORKFLOW TOOLS

new_techs = [Technology("Luigi", 0.2, 0.1, 0.3, 0.7, 0.7),
 Technology("MLFlow", 0.3, 0.2, 0.3, 0.7, 0.7),
 Technology("Dask", 0.4, 0.3, 0.5, 0.6, 0.7),
 Technology("Kafka", 0.6, 0.7, 0.7, 0.7, 0.7),
 Technology("Beam", 0.4, 0.5, 0.4, 0.7, 0.8),
 Technology("Jenkins", 0.9, 0.7, 0.9, 0.2, 0.6)]

Luigi: pace cost: 1.35, total cost: 1.35
MLFlow: pace cost: 1.12, total cost: 1.12
Dask: pace cost: 0.77, total cost: 0.67
Kafka: pace cost: 0.21, total cost: 0.21
Beam: pace cost: 0.60, total cost: 0.50
Jenkins: pace cost: 0.06, total cost: 0.00

 32

• Fit your problem to existing tech (if poss)

• Avoid sunk cost fallacy

• Experiment, but one-at-a-time

• What's right for Google isn't right for you

FINAL THOUGHTS

Come and work with us!
https://findouthow.datalab.rocks/

THANKS!
@jontutcher

https://findouthow.datalab.rocks/
https://www.twitter.com/jontutcher

